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INTRODUCTION 

MUCH WORK has been done on the theoretical prediction of 
particle-fluid transfer coefficients for a multiparticle-fluid 
system under the steady-state condition (e.g. refs. [IA]), but 
less attention has been focused on those under the dynamic 
condition [5]. It has usually been assumed that transfer 
coefficients under steady-state and dynamic conditions are 
the same. The purpose of this work is to examine if these 
particle-fluid transfer coefficients are identical. The present 
study is confined to a low flow rate region, and based on the 
free surface model [6] which has successfully been used in 
the studies of transfer rate in multiparticle-fluid systems 

]I, 31. 

SPHERICAL UNIT CELL 

Let us consider heat conduction in the concentric spherical 
cell of radii R (for solid particle) and R, (for fluid envelope). 
A temperature change imposed over the outer fluid surface 
results in heat transfer between the particle and fluid at the 
particle surface. When there exists no heat source or sink 
within the particle, the system is described as 

(1) 

(2) 

Tb =Ts and krF=ksT atr=R. (3) 

Suppose that a sinusoidal temperature change, T,, is given 
over the outer surface of the fluid envelope : 

T,=T,,cosot atr=R,. (4) 

The asymptotic solutions for fluid and so!id temperatures 
can be expressed, respectively, as TF =_Re[T, exp (iwt)] and 
T, = Re[Ts exp (iot)], where TF and T, are complex ampli- 
tudes. The temperature on the particle surface and the heat 
flux from the fluid to the solid surface are also expressed 
in terms of Rr[(Fs), _ R exp (itor)] and Re[k,(i?FJ?r), = R 
x exp (ic01)], respectively. 

LIMITING NUSSELT NUMBER UNDER 
DYNAMIC CONDITION 

A particle-fluid Nusselt number is defined as 

hlu = 2R 
k, TF*-(Ts),=R 

(5) 

where r,* is a representative value of the fluid temperature, 
such as the volume-mean or cup-mixing average. The numer- 
ator and denominator on the right-hand side of equation (5) 
are functions of time under the dynamic condition. However, 
if Nu is constant, the Nusselt number can be extended under 
the dynamic condition. 

On the other hand. the temperature change can be ex- 

pressed as the sum of its harmonic components. Similar to 
equation (5), the limiting Nusselt number is defined for each 
component as 

(6) 

where Fc is the complex amplitude of the representative 
value of fluid temperature, i.e. 7’: = Rr[FT cxp (iclj/)]. If % 
is considered constant for the components, the Nusselt num- 
ber is well defined under the dynamic condition. In this 
case the definitions based on equations (5) and (6) become 
equivalent. 

The Nusselt number depends upon the representative 
value of the fluid temperature, T;. Pfeffer and Happel [I] 
assumed the outer surface temperature to be T$. Miyauchi 
[2] pointed out that the cup-mixing value should be taken as 
Tz even in the limiting case of zero flow rate. In any event, 
the representative value of fluid temperature is considered 
to fall between the outer surface temperature. T,, and the 
volume-mean temperature, rv. 

If the limiting Nusselt number is well defined, its value is 
obtained by taking the limit at ,‘I = 0 of equation (6) as: 

for T: = T,> 

for T$ = TV 

where 

The limiting Nusselt numbers given by equations (7) and (8) 
are shown in Fig. 1, where the fluid volume fraction, chr is 

- 1 - (R/RJ3. 
As y increases, Nu’ approaches the limiting Nusselt num- 

ber under the steady-state condition : 

2 
Nu’=~ (9) 

1-G 
50 

for T,* = T, 

(10) 



NOMENCLATURE 

c specific heat of fluid [J kg ’ K ‘] i: r.tn.5. clTor 
rc, adsorption equilibrium constant [m’ kg ‘1 i;r, fluid volume fraction 
k thermal conductivity [W m- ’ Km ‘] sp intra~drticlc void fraction 
NU Nusselt number 5, R,!R 
R radius of solid particle [m] P density [kg m _ ‘1 

RX radius of spherical cell [m] ,I, angular frequency [rad s ‘J. 
RC particle Reynolds number 
r radial distance variable from the center of the 

particle [in] Superscripts 
T temperature [K] 0 zero flow rate 

r,,> amplitude of sinusoidal temperature change amplitude in complex for frequency input 
with frequency to imposed on the outer * representative value. 
surface [K] 

I time [s]. 
Subscripts 

Greek symbols F fluid 
r thermal diffusivity, k/(Ci>) [m’ s ‘J outer surface 

1 Cs,$C’, p,. for heat transfer; izp + psK, for hear ; solid 

adsorption V volume-mean. 

limiting Sherwood numbers for a linear adsorption systcni 
[7] are obtained from equations (7) and (8) by replacing y 
by sr,+psKA. It can be easily shown that, when there is heat 
~eneration/sink (or production/disapp~drancc of species by 
chemical reaction) within the particle, limiting Nusselt (or 
Sherwood) numbers under the dynamic condition coincide 
with those under the steady-state condition. 
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III this section, a computer simulation is conducted with a 
model system to examine any difference between the Nussclt 
numbers under steady-state and dynamic conditions, The 
difference is large when ‘; is small, i.e. solid liquid system. 

Suppose that ;I heat pulse ia imposed on water Ilowing 
into a packed column of glass heads. The conditions and 
physical properties used for the ~lculati~)I~ are listed in Table 

0.3 

(bl 
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I. When the how rate is in the laminar flow region, the 

Eb 
Nusselt number for this system is expected to agree with the 
limiting value. The calucs of %,‘I calculated arc shown in 

FIG. I. Limiting Nusselt numbers under the dynamic 
condition : (a) NuO vs 7 at Ed = 0.4; (b) Nu” v’s ch at ;’ = 0.5 

and X. 

In fact, equations (9) and (IO) agree with the expressions 
obtained by Miyauchi [2] for the limiting steady-state Nusselt 
numbers. 

A similar development may be made for mass transfer 
according to the heat---mass analogy. For example, dynamic 

I-&. 2 as a function of (I,. The response signals can bc prc- 

dieted from the dispersion -concentric model [X]. Angular 
frequency of harmonics contained in the response signal is 
less than 0.3 rad s _ ’ Figure 2 indicates that the limiting 
Nusscit number for this system may be regarded as constant 
in this frequency range. Therefore, the limiting Nusselt num- 
bers under the dynamic condition are found to be I~U” = 7 
with r: = T,, and Nu” = I5 with r: = r,,. On the other 
hand, the limiting Nusselt values under the steady-state con- 
dition arc 12.5 and 22.5 when r: = 7;, and r,, respectively. 

Table i. Data used for the prediction of temperature 

Fluid, water: density IOOOkgm~’ 
specific heat 4180Jkg ‘I( ’ 
thermal conductivity 0.586 W m- ’ K ’ 

Particlc, glass beads : radius 0.002 in 
density 2500 kgm ’ 
specific heat 670Jkg ‘K ’ 
thermal conductivity 0.88 W m ’ K ’ 

Column length : 0.01 m 
Bed void fraction : 0.4 
Interstitial fluid velocity : 0.625x10-‘ms ‘;Rc= 1 
Axial thermal dispersion coefhcient : 0.46xl0”m’s ’ 

~.~.._ __.. ~..~ ___. 
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FIG. 2. Frequency dependence of &” for the glass beads 
water system Physical properties are given in Table I. 

The response curves calculated from equilibrium and 
dynamic Nusselt numbers are illustrated in Figs. 3(a) and (b), 
respectively, in the cases of Tt = T, and TV. The difference 
between the response curves calculated with dynamic and 
steady-state Nusselt numbers, is evaluated in terms of the 
r.m.s. error, I-:. Since fluid temperature Tc is between T,, and 
TV, it is expected that careful measurements will enable us 
to distinguish the steady-state and dynamic Nusselt numbers. 

When the flow rate decreases, the response signals cal- 
culated with dynamic Nusselt numbers approach those with 
steady-state values. Therefore, it becomes difficult to detect 
the difference between dynamic and steady-state Nusselt 
numbers. For large values of ;’ for the gas-solid system, 
dynamic Nusselt numbers approach steady-state values at 
low fow rates. 
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